THE COMPLETE GUIDE TO

Achieving Observability in
Complex Modern Applications

il Rollbar

| Table of Contents

The State of Application Architecture and Deployment.............c.c...... 1
The Observability Challenge........coouuiiiiiiiiiii e 3
Modern Observability Challenges.......c..coviuiiiiiiiiiiiiiiinie e 5
Why Monitoring Falls Short of Observability........c.cccoeviiiiiiiiniiiinin, 8
Achieving Effective Observability......c.cooouiiiiiiiiiiiiiniii e, 10
Best Practices for Achieving Observability........ccccoiveiiiiiiiiniiinnl 15
CONCIUSION. ... e ettt e e e 18

Rollbar on Achieving Observability in Complex Modern Applications

The State of Application
Architecture and Deployment

Software applications have changed radically in just a few
years. Even in cases where application functionality has not
changed, application architectures and deployments often look
very different than they did at the start of this decade.

Modern and cloud-native applications are composed of a complex web
of microservices, rather than monolithic binaries. In many cases, they
are deployed using infrastructure such as REST services, containers,
and serverless functions, all of which add significantly more complexity
and layers to the software stack. Applications are sometimes written
using multiple languages, a feature that was difficult to implement
prior to the microservices age. And because of the continuous

delivery paradigm, application updates arrive at dizzying speed.

Rollbar on Achieving Observability in Complex Modern Applications

From the perspective of developers and users, most of these changes

are welcome. They lead to software that is more agile, to more efficient

coding practices, and faster delivery of new features into production.

Rollbar on Achieving Observability in Complex Modern Applications 2

| The Observability Challenge

However, modern application architectures and deployment processes
also create challenges, particularly for DevOps teams that are responsible
for managing applications across the development lifecycle.

Chief among these challenges is observability.

Observability refers to the ability to identify and interpret changes
to software and infrastructure on an ongoing basis. It also entails
the ability to respond to undesirable changes quickly in order to
guarantee application performance without slowing down delivery.

Observability is a relatively new term within the DevOps lexicon,
which originated from the study of control systems. It has

been used in the aerospace industry for years since it's critical
that pilots can determine and control the state of the plane
even in challenging flying conditions with poor visibility.

In the software field, observability may appear to be merely a
jargony way to refer to what DevOps engineers have traditionally
called monitoring, but it's actually different. As Cindy Sridharan has
persuasively written, observability and monitoring complement one
another, but are not alternative terms for the same process.

Rollbar on Achieving Observability in Complex Modern Applications

https://en.wikipedia.org/wiki/Observability
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c

-

100, 120
0000 140

44 i

D 5 B
® 0 6

Observability means that a system’s output is sufficient to determine its
state. Monitoring a system does not necessarily mean that you have all

the information you need to determine the system’s state. This is critically
important when you're troubleshooting a problem. If your system is
essentially a black box and you cannot determine its state, it becomes very
difficult to troubleshoot the system. In order to achieve observability, you
need to instrument your system with sufficient outputs through logs, events,
or other data that can be used by engineers to troubleshoot problems.

Monitoring tools can help you to achieve observability, but they don't

give the full picture. You may need to use several systems and resources,
including log events, APM, and distributed tracing. Furthermore, you need
to design your system in such a way that it can be observed, as well as
instrument outputs that give you enough data to troubleshoot problems.

The goal of observability is to gain continuous understanding of
the state of an application in order to get to the root of complex
performance problems, foresee and prevent future issues,

and map the complex relationships between infrastructure,
microservices, source code, and software delivery processes.

Rollbar on Achieving Observability in Complex Modern Applications 4

| Modern Observability Challenges

Maintaining observability in a modern software environment is difficult
because of new trends in software architecture and deployment. The
greater the complexity of infrastructure and application architectures,
the harder it becomes to troubleshoot performance and reliability
issues. Unless this challenge is properly managed, it leads to a loss of
observability, which in turn increases mean time to resolution (MTTR)
of performance incidents. Ultimately, poor observability degrades the
user experience and undercuts the agility and velocity of the continuous
delivery process. This is bad for the DevOps team, and bad for business.

Rollbar on Achieving Observability in Complex Modern Applications

Achieving observability has always required careful planning and the

implementation of tools that extend beyond monitoring. However,
observability is particularly challenging in today’s software ecosystem for the
following reasons.

¢ Full-stack applications. It is common today for applications to be
composed of server-side and client-side components. In some cases,
there may be multiple applications’ services running in each of these
locations. Observability requires understanding all parts of the stack.

e Microservices. Microservices make applications more agile, but they
also mean that an application is comprised of many more moving parts.
In addition, the dependencies between microservices are often complex,
with the result that the root of a problem that affects one microservice
may lie with a different microservice. Root-cause analysis is therefore
especially difficult in a microservices architecture.

Rollbar on Achieving Observability in Complex Modern Applications 6

o Multi-language applications. Microservices make it easier to write an
application using multiple programming languages because different
microservices can be implemented in different languages. This is
advantageous from a development standpoint, but it means that
observability tools must support multiple languages.

e« Complex hosting architectures. Today's applications are often not
deployed in a single location. They may span multiple public clouds, or
rely on a hybrid cloud deployment strategy that mixes public and private
infrastructure. These complex deployment infrastructures mean that
there are more deployment regions to observe. What's more, each region
may require different observability tools or processes.

e Continuous delivery. Continuous delivery has many benefits, but
it leads to rapidly changing software configurations. Observability
processes must keep pace, which means that continuous observability is
the only effective way to manage a continuously delivered application.

e Many-layered stacks. The infrastructure stacks that deploy applications
often have many layers. For example, an application may run inside
containers, which run inside virtual machines, which run on top of host
servers in a public cloud. Each of these layers needs to be observed in
order to achieve observability.

e Legacy applications. Not all applications have modern architectures
or deployment processes. Complete observability requires supporting
legacy applications as well, adding more complexity to the process.

Rollbar on Achieving Observability in Complex Modern Applications 7

| Why Monitoring Falls Short of Observability

The typical organization attempts to respond to the challenges described
above with a strategy that centers on monitoring. Such an approach falls
short of delivering the business value that only observability can bring.

That is because, as noted above, monitoring and observability are not the
same thing. Monitoring typically involves tools that deliver the following
functionality:

e Application Performance Monitoring (APM). APM entails identifying
performance slowdowns or failures within an application, then
addressing them. APM typically focuses on runtime rather than
earlier stages of the application lifecycle. APM helps to improve the
performance of running applications, but it does not address deeper
issues, such as coding or architectural problems that cause an
application to perform suboptimally.

e Infrastructure monitoring. By monitoring infrastructure, you identify
hardware and software failures that can lead to performance or
availability problems for an application. Infrastructure monitoring helps
to keep applications and data available to users, but it does little more
than that.

Rollbar on Achieving Observability in Complex Modern Applications

¢ Incident management. In some cases, monitoring tool sets provide
incident management functionality, which helps DevOps teams
coordinate responses to application or infrastructure problems. Incident
management is helpful from an organizational perspective, but its
primary purpose is to facilitate responses to issues, not provide deeper
visibility into applications and software environments.

In short, monitoring involves finding and responding to problems
within host infrastructure or applications when they are running.
This is valuable, but it does not help to manage the broader set of
performance issues, process inefficiencies and user-experience
problems that can occur throughout the software delivery lifecycle.

To address the latter challenges, organizations need observability.
Observability provides an understanding of the application at

all stages of delivery, as well as continuous visibility into the
relationship between the application, the software environment
that hosts it, and the infrastructure it runs on.

In these ways, a fully observable system empowers DevOps teams to build
more efficient applications, maximize performance and optimize decisions
about infrastructure and process design across the organization. The
ultimate result is a better experience for users and greater value to the
business (which spends less time and money to deliver quality software).

Rollbar on Achieving Observability in Complex Modern Applications

| Achieving Effective Observability

The observability challenges discussed above can be met,

but only with proper preparation and investment. Effective
observability for modern applications demands a comprehensive
set of tools and software development practices.

Full-Stack Error Tracking

Error tracking enables DevOps teams to trace an application performance
problem or crash back to its source and identify which parts of the
application source code should be updated in order to fix the issue.

Error tracking tools can be used to enhance monitoring and incident
management by providing deep visibility into an application, which
runtime monitoring alone cannot achieve. For example, error tracking
solutions provide insight into request parameters, local variables, and
telemetry on user behavior before the error occurred. In addition,
error tracking can be used at earlier stages of the delivery pipeline

to vet applications before they are released into production.

Leading error tracking vendors: Rollbar, Crashlytics

Rollbar on Achieving Observability in Complex Modern Applications

10

https://rollbar.com/
https://try.crashlytics.com/

Distributed Tracing

Distributed tracing tools track a transaction across the multiple services and
infrastructure layers through which it passes in order to reach its destination.
Distributed tracing is particularly important in microservices-based, full-
stack application deployments because such deployments are complex.

Distributed tracing can help to identify which component of an application
environment is causing a performance problem or failure. Like error
tracking, it provides a deeper level of visibility that complements monitoring
data and is useful when the root cause of a problem is not apparent.

Leading distributed tracing solutions: HTrace, Zipkin

APM

As noted above, APM tools monitor applications for failures or slowdowns.
They are typically used in production environments, although it is possible
to deploy APM tools earlier in the development lifecycle as well.

APM tools should be used to identify application problems that could
impact users. On their own, however, APM tools often do not provide
enough information to identify the root cause of a performance
issue, especially in modern, complex application environments.

Leading APM solutions: New Relic, Instana

Rollbar on Achieving Observability in Complex Modern Applications 1

http://htrace.incubator.apache.org/
https://zipkin.io/
https://newrelic.com/
https://www.instana.com/

Infrastructure Monitoring

Infrastructure monitoring refers to the process of checking for
failures in hardware or software infrastructure that could degrade
application performance. Infrastructure failures could range from a
broken hard disk to a virtual machine that has stopped responding.

Like APM, infrastructure monitoring is useful for maintaining service levels
in a production environment, as well as for preventing problems within
testing and staging infrastructure that could slow software delivery.

Leading infrastructure monitoring solutions: Nagios, Zabbix

Log Aggregation and Analysis

Log aggregation tools collect logs from various sources and enable
analysis from a centralized location. They are useful because modern
software environments and applications produce a variety of different
logs—ranging from authentication and access to error and operational
logs— and log data is typically stored in a variety of locations.

Log aggregation and analysis are particularly useful for identifying
overarching trends that span across an application environment, as well as
performing post-mortems after a failure. Real-time log analysis can also
help to detect security threats and other problems, although log analysis on
its own is not enough to keep software environments stable in real time.

Leading log aggregation tools: Loggly, Sumo Logic

Rollbar on Achieving Observability in Complex Modern Applications

12

https://www.nagios.org/
https://www.zabbix.com/
https://www.loggly.com/
https://www.sumologic.com/

Incident Management

Incident management systems help engineers to coordinate responses
to performance and availability issues. They are designed mainly

to orchestrate communication and the sharing of resources.

Incident management systems do not generate the data that DevOps
teams need to respond to problems; they simply help to organize it and

make the right data available to the right people when an incident occurs.

Leading incident management tools: PagerDuty, VictorOps

Rollbar on Achieving Observability in Complex Modern Applications

13

https://www.pagerduty.com/
https://victorops.com/

| Best Practices for Achieving Observability

In order to leverage observability tools effectively, organizations should
integrate the following practices into their software delivery processes:

e Good system architecture and development practices. It's critical that
your system capture enough data to troubleshoot problems. Monitoring
solutions only track what they can see. Logging solutions require you to
add meaningful log statements to your code. Bugs should not surface to
users without also tracking an error or warning on the backend.

» Balance performance with visibility. Swallowing exceptions may
prevent a crash and improve application performance from the user’s
perspective, but doing so reduces observability unless you log or track
the error. Additionally, it's great to have automatic retries and failover in
your microservices architecture, but you should track when they happen
in order to troubleshoot spikes in latency and dead letter queues. All of
these examples require your team to design your architecture and your
software in a way that enables it to be observed.

e Shift-left processes. The "shift-left” paradigm refers to the practice of
performing tasks earlier in the delivery chain, rather than waiting until
software is in production. By shifting processes such as error tracking
and APM to the left (while still performing them in production, too),
organizations gain earlier insights into software issues that may impact

Rollbar on Achieving Observability in Complex Modern Applications 14

the user experience. Earlier insights lead to more effective observability
by enabling teams to detect and respond to problems while still in
integration or development environments. It's more cost-effective to
track debug-level information in these environments, making problems
easier to address.

e Continuous communication. To the extent feasible, everyone on the
DevOps team should understand the tools that are used to achieve
observability, and should communicate constantly about observability
insights provided by these tools. Not every team member needs to be
an expert in every tool; that would not be realistic. However, everyone
on the team should understand the basics of the observability toolset
and its goals, and information should not be siloed or handed off
manually from one part of the team to another. Otherwise, your system is
effectively non-observable to people tasked with running it.

e Prioritization policies. A fully observable system will, by design,
generate more data, so you need a way to prioritize what matters from a
business or user-experience perspective. Not all performance problems
or application errors are of equal seriousness, and in most cases they
cannot all be addressed. In order to avoid overwhelming engineers with
a never-ending stream of alerts, organizations should have policies in
place that help to define which types of problems receive priority. You
also need support from your monitoring tools to help you rank problems
according to priority.

Rollbar on Achieving Observability in Complex Modern Applications 15

Ultimately, achieving observability requires cultural change. This is one
of the differentiators between observability and monitoring: Whereas
monitoring can be achieved by adopting the right tools, achieving
observability entails rethinking the ways in which your team interacts with
the data its tools collect, reacts to problems and shares information.

In a culture centered on observability, engineers don’t just collect
data for data collection’s sake. Nor do they design applications to
maximize uptime and performance at the expense of visibility and
continuous improvement. Instead, they strike a balance between
these various priorities in order to achieve observability, which
empowers them to deliver the best overall user experience.

Rollbar on Achieving Observability in Complex Modern Applications

16

| Conclusion

Applications have evolved. So have the tools and processes that DevOps
teams need to achieve observability into their applications. If your
organization is performing only monitoring, and lacks the tools and
processes necessary for effective observability, your software delivery
chain is not driving as much value for the business as it could.

With observability, you gain the insights necessary not just to
identify and respond to problems after your applications have
been deployed, but to also trace issues to their source and
enhance your software so that problems do not recur.

Monitoring tools also empower your organization to take full advantage
of next-generation infrastructure technologies and software architecture
techniques while keeping your team focused on developing a great product.

Ultimately, an observable system enables your DevOps team
to provide the best possible user experience. Happy users are
what generate business and drive long-term success.

Rollbar on Achieving Observability in Complex Modern Applications

| Ready to get started with Rollbar?

Visit our website for more tips on using Rollbar to accelerate
the transition to achieving observability in your organization, or
if you are interested in learning more about the product.

We also offer a fully featured free trial if you wanted
to try it hands-on and get started right away.

Should you have any questions or feedback, please
contact our team at sales@rollbar.com

Rollbar on Achieving Observability in Complex Modern Applications

18

https://rollbar.com/
https://rollbar.com/signup/
mailto:sales@rollbar.com

“At 2 AM, when | get a notification from Rollbar, | am
grateful to have this much visibility into our app so we can

quickly address the issue before it impacts customers.”’

\ lanChan
X : ‘ Director of Engineering at Branch
»

“Rollbar allows us to go from alerting to impact analysis and

resolution in a matter of minutes. Without it, we would be flying blind.’

Arnaud Ferreri
Engineering Team Lead, Instacart

“There are so many emotional pains developers and operators
have from all kinds of hideous errors they have shipped. What

if you could make that go away? That’s what Rollbar does.”

Rob Zuber
’ CTO of CircleCl

Rollbar on Achieving Observability in Complex Modern Applications 19

https://rollbar.com/customers/branch/
https://rollbar.com/customers/instacart/
https://rollbar.com/customers/circleci/

