
THE COMPLETE GUIDE TO

Achieving Observability in
Complex Modern Applications

The State of Application Architecture and Deployment..........................1

The Observability Challenge..3

Modern Observability Challenges..5

Why Monitoring Falls Short of Observability..8

Achieving Effective Observability..10

Best Practices for Achieving Observability...15

Conclusion...18

Table of Contents

Rollbar on Achieving Observability in Complex Modern Applications

Software applications have changed radically in just a few

years. Even in cases where application functionality has not

changed, application architectures and deployments often look

very different than they did at the start of this decade.

Modern and cloud-native applications are composed of a complex web

of microservices, rather than monolithic binaries. In many cases, they

are deployed using infrastructure such as REST services, containers,

and serverless functions, all of which add significantly more complexity

and layers to the software stack. Applications are sometimes written

using multiple languages, a feature that was difficult to implement

prior to the microservices age. And because of the continuous

delivery paradigm, application updates arrive at dizzying speed.

The State of Application

Architecture and Deployment

1Rollbar on Achieving Observability in Complex Modern Applications

From the perspective of developers and users, most of these changes

are welcome. They lead to software that is more agile, to more efficient

coding practices, and faster delivery of new features into production.

2Rollbar on Achieving Observability in Complex Modern Applications

However, modern application architectures and deployment processes

also create challenges, particularly for DevOps teams that are responsible

for managing applications across the development lifecycle.

Chief among these challenges is observability.

Observability refers to the ability to identify and interpret changes

to software and infrastructure on an ongoing basis. It also entails

the ability to respond to undesirable changes quickly in order to

guarantee application performance without slowing down delivery.

Observability is a relatively new term within the DevOps lexicon,

which originated from the study of control systems. It has

been used in the aerospace industry for years since it’s critical

that pilots can determine and control the state of the plane

even in challenging flying conditions with poor visibility.

In the software field, observability may appear to be merely a

jargony way to refer to what DevOps engineers have traditionally

called monitoring, but it’s actually different. As Cindy Sridharan has

persuasively written, observability and monitoring complement one

another, but are not alternative terms for the same process.

The Observability Challenge

3Rollbar on Achieving Observability in Complex Modern Applications

https://en.wikipedia.org/wiki/Observability
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c

Observability means that a system’s output is sufficient to determine its

state. Monitoring a system does not necessarily mean that you have all

the information you need to determine the system’s state. This is critically

important when you’re troubleshooting a problem. If your system is

essentially a black box and you cannot determine its state, it becomes very

difficult to troubleshoot the system. In order to achieve observability, you

need to instrument your system with sufficient outputs through logs, events,

or other data that can be used by engineers to troubleshoot problems.

Monitoring tools can help you to achieve observability, but they don’t

give the full picture. You may need to use several systems and resources,

including log events, APM, and distributed tracing. Furthermore, you need

to design your system in such a way that it can be observed, as well as

instrument outputs that give you enough data to troubleshoot problems.

The goal of observability is to gain continuous understanding of

the state of an application in order to get to the root of complex

performance problems, foresee and prevent future issues,

and map the complex relationships between infrastructure,

microservices, source code, and software delivery processes.

4Rollbar on Achieving Observability in Complex Modern Applications

Maintaining observability in a modern software environment is difficult

because of new trends in software architecture and deployment. The

greater the complexity of infrastructure and application architectures,

the harder it becomes to troubleshoot performance and reliability

issues. Unless this challenge is properly managed, it leads to a loss of

observability, which in turn increases mean time to resolution (MTTR)

of performance incidents. Ultimately, poor observability degrades the

user experience and undercuts the agility and velocity of the continuous

delivery process. This is bad for the DevOps team, and bad for business.

Modern Observability Challenges

5Rollbar on Achieving Observability in Complex Modern Applications

Achieving observability has always required careful planning and the

implementation of tools that extend beyond monitoring. However,

observability is particularly challenging in today’s software ecosystem for the

following reasons.

• Full-stack applications. It is common today for applications to be

composed of server-side and client-side components. In some cases,

there may be multiple applications’ services running in each of these

locations. Observability requires understanding all parts of the stack.

• Microservices. Microservices make applications more agile, but they

also mean that an application is comprised of many more moving parts.

In addition, the dependencies between microservices are often complex,

with the result that the root of a problem that affects one microservice

may lie with a different microservice. Root-cause analysis is therefore

especially difficult in a microservices architecture.

6Rollbar on Achieving Observability in Complex Modern Applications

• Multi-language applications. Microservices make it easier to write an

application using multiple programming languages because different

microservices can be implemented in different languages. This is

advantageous from a development standpoint, but it means that

observability tools must support multiple languages.

• Complex hosting architectures. Today’s applications are often not

deployed in a single location. They may span multiple public clouds, or

rely on a hybrid cloud deployment strategy that mixes public and private

infrastructure. These complex deployment infrastructures mean that

there are more deployment regions to observe. What’s more, each region

may require different observability tools or processes.

• Continuous delivery. Continuous delivery has many benefits, but

it leads to rapidly changing software configurations. Observability

processes must keep pace, which means that continuous observability is

the only effective way to manage a continuously delivered application.

• Many-layered stacks. The infrastructure stacks that deploy applications

often have many layers. For example, an application may run inside

containers, which run inside virtual machines, which run on top of host

servers in a public cloud. Each of these layers needs to be observed in

order to achieve observability.

• Legacy applications. Not all applications have modern architectures

or deployment processes. Complete observability requires supporting

legacy applications as well, adding more complexity to the process.

7Rollbar on Achieving Observability in Complex Modern Applications

Why Monitoring Falls Short of Observability

The typical organization attempts to respond to the challenges described

above with a strategy that centers on monitoring. Such an approach falls

short of delivering the business value that only observability can bring.

That is because, as noted above, monitoring and observability are not the

same thing. Monitoring typically involves tools that deliver the following

functionality:

• Application Performance Monitoring (APM). APM entails identifying

performance slowdowns or failures within an application, then

addressing them. APM typically focuses on runtime rather than

earlier stages of the application lifecycle. APM helps to improve the

performance of running applications, but it does not address deeper

issues, such as coding or architectural problems that cause an

application to perform suboptimally.

• Infrastructure monitoring. By monitoring infrastructure, you identify

hardware and software failures that can lead to performance or

availability problems for an application. Infrastructure monitoring helps

to keep applications and data available to users, but it does little more

than that.

8Rollbar on Achieving Observability in Complex Modern Applications

• Incident management. In some cases, monitoring tool sets provide

incident management functionality, which helps DevOps teams

coordinate responses to application or infrastructure problems. Incident

management is helpful from an organizational perspective, but its

primary purpose is to facilitate responses to issues, not provide deeper

visibility into applications and software environments.

In short, monitoring involves finding and responding to problems

within host infrastructure or applications when they are running.

This is valuable, but it does not help to manage the broader set of

performance issues, process inefficiencies and user-experience

problems that can occur throughout the software delivery lifecycle.

To address the latter challenges, organizations need observability.

Observability provides an understanding of the application at

all stages of delivery, as well as continuous visibility into the

relationship between the application, the software environment

that hosts it, and the infrastructure it runs on.

In these ways, a fully observable system empowers DevOps teams to build

more efficient applications, maximize performance and optimize decisions

about infrastructure and process design across the organization. The

ultimate result is a better experience for users and greater value to the

business (which spends less time and money to deliver quality software).

9Rollbar on Achieving Observability in Complex Modern Applications

Achieving Effective Observability

The observability challenges discussed above can be met,

but only with proper preparation and investment. Effective

observability for modern applications demands a comprehensive

set of tools and software development practices.

Full-Stack Error Tracking

Error tracking enables DevOps teams to trace an application performance

problem or crash back to its source and identify which parts of the

application source code should be updated in order to fix the issue.

Error tracking tools can be used to enhance monitoring and incident

management by providing deep visibility into an application, which

runtime monitoring alone cannot achieve. For example, error tracking

solutions provide insight into request parameters, local variables, and

telemetry on user behavior before the error occurred. In addition,

error tracking can be used at earlier stages of the delivery pipeline

to vet applications before they are released into production.

Leading error tracking vendors: Rollbar, Crashlytics

10Rollbar on Achieving Observability in Complex Modern Applications

https://rollbar.com/
https://try.crashlytics.com/

Distributed Tracing

Distributed tracing tools track a transaction across the multiple services and

infrastructure layers through which it passes in order to reach its destination.

Distributed tracing is particularly important in microservices-based, full-

stack application deployments because such deployments are complex.

Distributed tracing can help to identify which component of an application

environment is causing a performance problem or failure. Like error

tracking, it provides a deeper level of visibility that complements monitoring

data and is useful when the root cause of a problem is not apparent.

Leading distributed tracing solutions: HTrace, Zipkin

APM

As noted above, APM tools monitor applications for failures or slowdowns.

They are typically used in production environments, although it is possible

to deploy APM tools earlier in the development lifecycle as well.

APM tools should be used to identify application problems that could

impact users. On their own, however, APM tools often do not provide

enough information to identify the root cause of a performance

issue, especially in modern, complex application environments.

Leading APM solutions: New Relic, Instana

11Rollbar on Achieving Observability in Complex Modern Applications

http://htrace.incubator.apache.org/
https://zipkin.io/
https://newrelic.com/
https://www.instana.com/

Infrastructure Monitoring

Infrastructure monitoring refers to the process of checking for

failures in hardware or software infrastructure that could degrade

application performance. Infrastructure failures could range from a

broken hard disk to a virtual machine that has stopped responding.

Like APM, infrastructure monitoring is useful for maintaining service levels

in a production environment, as well as for preventing problems within

testing and staging infrastructure that could slow software delivery.

Leading infrastructure monitoring solutions: Nagios, Zabbix

Log Aggregation and Analysis

Log aggregation tools collect logs from various sources and enable

analysis from a centralized location. They are useful because modern

software environments and applications produce a variety of different

logs—ranging from authentication and access to error and operational

logs— and log data is typically stored in a variety of locations.

Log aggregation and analysis are particularly useful for identifying

overarching trends that span across an application environment, as well as

performing post-mortems after a failure. Real-time log analysis can also

help to detect security threats and other problems, although log analysis on

its own is not enough to keep software environments stable in real time.

Leading log aggregation tools: Loggly, Sumo Logic

12Rollbar on Achieving Observability in Complex Modern Applications

https://www.nagios.org/
https://www.zabbix.com/
https://www.loggly.com/
https://www.sumologic.com/

Incident Management

Incident management systems help engineers to coordinate responses

to performance and availability issues. They are designed mainly

to orchestrate communication and the sharing of resources.

Incident management systems do not generate the data that DevOps

teams need to respond to problems; they simply help to organize it and

make the right data available to the right people when an incident occurs.

Leading incident management tools: PagerDuty, VictorOps

13Rollbar on Achieving Observability in Complex Modern Applications

https://www.pagerduty.com/
https://victorops.com/

Best Practices for Achieving Observability

In order to leverage observability tools effectively, organizations should

integrate the following practices into their software delivery processes:

• Good system architecture and development practices. It’s critical that

your system capture enough data to troubleshoot problems. Monitoring

solutions only track what they can see. Logging solutions require you to

add meaningful log statements to your code. Bugs should not surface to

users without also tracking an error or warning on the backend.

• Balance performance with visibility. Swallowing exceptions may

prevent a crash and improve application performance from the user’s

perspective, but doing so reduces observability unless you log or track

the error. Additionally, it’s great to have automatic retries and failover in

your microservices architecture, but you should track when they happen

in order to troubleshoot spikes in latency and dead letter queues. All of

these examples require your team to design your architecture and your

software in a way that enables it to be observed.

• Shift-left processes. The “shift-left” paradigm refers to the practice of

performing tasks earlier in the delivery chain, rather than waiting until

software is in production. By shifting processes such as error tracking

and APM to the left (while still performing them in production, too),

organizations gain earlier insights into software issues that may impact

14Rollbar on Achieving Observability in Complex Modern Applications

the user experience. Earlier insights lead to more effective observability

by enabling teams to detect and respond to problems while still in

integration or development environments. It’s more cost-effective to

track debug-level information in these environments, making problems

easier to address.

• Continuous communication. To the extent feasible, everyone on the

DevOps team should understand the tools that are used to achieve

observability, and should communicate constantly about observability

insights provided by these tools. Not every team member needs to be

an expert in every tool; that would not be realistic. However, everyone

on the team should understand the basics of the observability toolset

and its goals, and information should not be siloed or handed off

manually from one part of the team to another. Otherwise, your system is

effectively non-observable to people tasked with running it.

• Prioritization policies. A fully observable system will, by design,

generate more data, so you need a way to prioritize what matters from a

business or user-experience perspective. Not all performance problems

or application errors are of equal seriousness, and in most cases they

cannot all be addressed. In order to avoid overwhelming engineers with

a never-ending stream of alerts, organizations should have policies in

place that help to define which types of problems receive priority. You

also need support from your monitoring tools to help you rank problems

according to priority.

15Rollbar on Achieving Observability in Complex Modern Applications

Ultimately, achieving observability requires cultural change. This is one

of the differentiators between observability and monitoring: Whereas

monitoring can be achieved by adopting the right tools, achieving

observability entails rethinking the ways in which your team interacts with

the data its tools collect, reacts to problems and shares information.

In a culture centered on observability, engineers don’t just collect

data for data collection’s sake. Nor do they design applications to

maximize uptime and performance at the expense of visibility and

continuous improvement. Instead, they strike a balance between

these various priorities in order to achieve observability, which

empowers them to deliver the best overall user experience.

16Rollbar on Achieving Observability in Complex Modern Applications

Conclusion

Applications have evolved. So have the tools and processes that DevOps

teams need to achieve observability into their applications. If your

organization is performing only monitoring, and lacks the tools and

processes necessary for effective observability, your software delivery

chain is not driving as much value for the business as it could.

With observability, you gain the insights necessary not just to

identify and respond to problems after your applications have

been deployed, but to also trace issues to their source and

enhance your software so that problems do not recur.

Monitoring tools also empower your organization to take full advantage

of next-generation infrastructure technologies and software architecture

techniques while keeping your team focused on developing a great product.

Ultimately, an observable system enables your DevOps team

to provide the best possible user experience. Happy users are

what generate business and drive long-term success.

17Rollbar on Achieving Observability in Complex Modern Applications

Ready to get started with Rollbar?

Visit our website for more tips on using Rollbar to accelerate

the transition to achieving observability in your organization, or

if you are interested in learning more about the product.

We also offer a fully featured free trial if you wanted

to try it hands-on and get started right away.

Should you have any questions or feedback, please

contact our team at sales@rollbar.com

18Rollbar on Achieving Observability in Complex Modern Applications

https://rollbar.com/
https://rollbar.com/signup/
mailto:sales@rollbar.com

“At 2 AM, when I get a notification from Rollbar, I am

grateful to have this much visibility into our app so we can

quickly address the issue before it impacts customers.”

Ian Chan
Director of Engineering at Branch

“Rollbar allows us to go from alerting to impact analysis and

resolution in a matter of minutes. Without it, we would be flying blind.”

Arnaud Ferreri
Engineering Team Lead, Instacart

“There are so many emotional pains developers and operators

have from all kinds of hideous errors they have shipped. What

if you could make that go away? That’s what Rollbar does.”

Rob Zuber

CTO of CircleCI

19Rollbar on Achieving Observability in Complex Modern Applications

https://rollbar.com/customers/branch/
https://rollbar.com/customers/instacart/
https://rollbar.com/customers/circleci/

